

INFLUENCE OF PARAMETERS OF LARGE TURBOGENERATORS ON SHORT CIRCUIT CURRENTS AND TORQUES

2024 ElCon

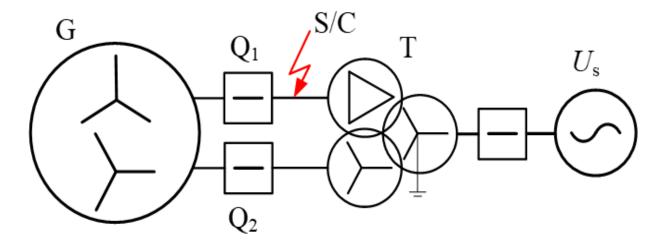
Speaker:

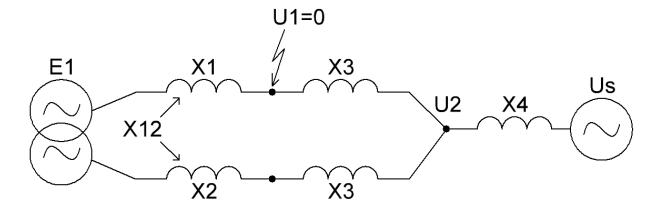
Alexey Slobodyanyuk

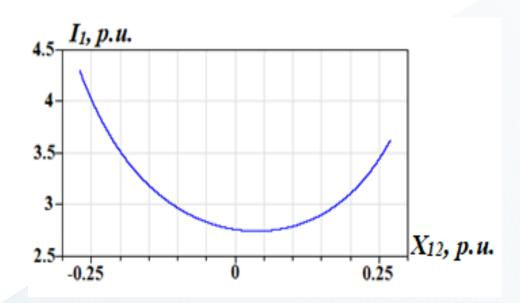
Authors:

Sergey Smolovik, professor, senior researcher of the scientific Department, JSC «STC UPS»

Andrei Brilinskiy, docent, head of the Energy Systems Development in St. Petersburg Department, JSC «STC UPS»


Lev Kostcheev, professor, scientific director, JSC «STC UPS»


Vladymir Chudny, docent of Higher school of Electric Power Systems, SPbPU

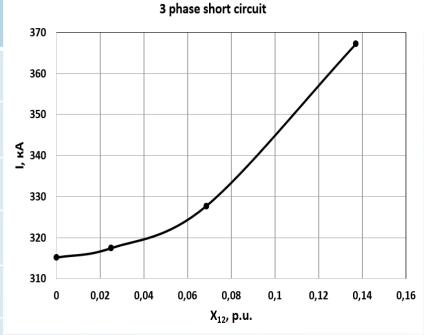

Alexey Slobodyanyuk, student of Higher school of Electric Power Systems, SPbPU

Connection diagram of the T3V-1200-2 generator to the network

Dependence of the short-circuit current at the terminals in one of the generator windings on the mutual reactance along the leakage paths between three-phase systems

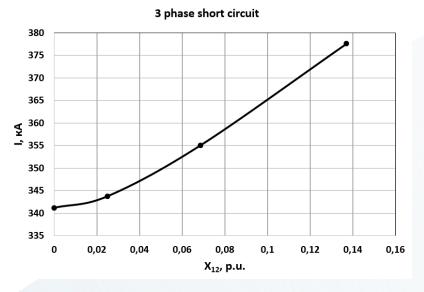
Main parameters of the demonstration model

Nº	Name of the parameter	Designation	Units	T3V-1200-2A	TVV-1200-2
1	Synchronous reactance in the direct axis	Xd	p.u.	2,275	2,44
2	Leakage reactance of the stator winding	Xs	p.u.	0,232	0,315
3	Mutual reactance between two three- phase systems by leakage flux	X12	p.u.	0,137	0,102
4	Leakage reactance of the excitation winding	Xsr	p.u.	0,123	0,1225


2024 ElCon 3

Short circuits of T3V-1200-2A in idle mode

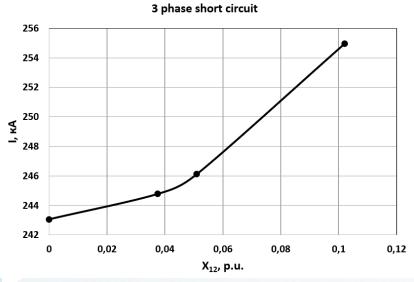
X ₁₂ , p.u.	Type of accident	I _s , kA	I _{s/c} /I _{syste} _m , kA	I _{windin}	T _{e1} , p.u.	T _{e2} , p.u.
0	Three-phase s/c on one of the three-phase systems	315,1	587/ 271,84	32,54	3,55	-0,49
	Two-phase s/c transitioning to three-phase s/c	346,1	643,86/ 297,7	39,5	4,45 1	-0,6078
0,025	Three-phase s/c on one of the three-phase systems	317,4	586,56/ 269,08	37,66	3,56	-0,426
	Two-phase s/c transitioning to three-phase s/c	348,0	642,06/ 294	90,2	4,45	-0,5256
0,0685	Three-phase s/c on one of the three-phase systems	327,7	591,07/ 263,02	48,72	3,65	-0,4185
	Two-phase s/c transitioning to three-phase s/c	357,5 2	643,86/ 286,34	33,04	4,49 2	-0,51
0,137	Three-phase s/c on one of the three-phase systems	367,2	619/ 251,8	77,6	4,16 5	-0,97
	Two-phase s/c transitioning to three-phase s/c	432,2	727,2/ 295	90,2	5,88	-1,35



Dependence of the short circuit current amplitude value at threephase short circuit on the mutual reactance along the leakage paths between three-phase systems (T3V-1200-2A, idle mode)

Short circuit of T3V-1200-2A in rated load mode

X ₁₂ , p.u.	Type of accident	I _s , kA	I _{s/c} /I _{syste} _m , kA	Iwinding 2, KA	T _{e1} , p.u.	T _{e2} , p.u.
0	Three-phase s/c on one of the three-phase systems	341,2	612,28/ 271,08	115	4,192	1,798
	Two-phase s/c transitioning to three-phase s/c	401,88	723,26/ 321,38	114,96	5,935	1,959
0,025	Three-phase s/c on one of the three-phase systems	343,76	610,92/ 267,16	117,6	4,214	1,765
	Two-phase s/c transitioning to three-phase s/c	404,5	721/ 316,5	119,48	5,951	1,966
0,0685	Three-phase s/c on one of the three-phase systems	355,04	615,44/ 260,4	120,46	4,312	1,65
	Two-phase s/c transitioning to three-phase s/c	415,96	723,72/ 307,76	127,1	6,028	1,922
0,137	Three-phase s/c on one of the three-phase systems	377,6	617,2/ 239,6	86,6	4,7	-0,52
	Two-phase s/c transitioning to three-phase s/c	446,6	731/ 284,4	99,6	6,73	-0,91



Dependence of the short circuit current amplitude value at three-phase short circuit on the mutual reactance along the leakage paths between three-phase systems (T3V-1200-2A, rated load mode)

Short circuits of TVV-1200-2 in idle mode

X ₁₂ , p.u.	Type of accident	I _s , kA	I _{s/c} /I _{syste} _m , kA	Iwinding 2, KA	T _{e1} , p.u.	T _{e2} , p.u.
0	Three-phase s/c on one of the three-phase systems	243,06	516,16/ 273,1	27,08	2,725	-0,4383
	Two-phase s/c transitioning to three-phase s/c	266,42	564,44/ 298,02	32,48	3,391	-0,5389
0,0375	Three-phase s/c on one of the three-phase systems	244,78	514,36/ 269,58	30,1	2,746	-0,339
	Two-phase s/c transitioning to three-phase s/c	268,14	562,64/ 294,5	34,36	3,41	-0,4157
0,051	Three-phase s/c on one of the three-phase systems	246,12	514,8/ 268,68	31,96	2,762	-0,3204
	Two-phase s/c transitioning to three-phase s/c	269,54	562,64/ 293,1	36,1	3,427	-0,4131
0,102	Three-phase s/c on one of the three-phase systems	254,96	518,88/ 263,92	40,58	2,867	-0,4056
	Two-phase s/c transitioning to three-phase s/c	279,1	567,14/ 288,04	44,42	3,548	-0,4722

Dependence of the short circuit current amplitude value at three-phase short circuit on the mutual reactance along the leakage paths between three-phase systems (TVV-1200-2, idle mode).

- 1. A significant effect of the difference in the electromagnetic parameters of a hydrogenwater-cooled generator and a water-water-cooled generator on currents and torques during short circuits.
- 2. The influence of the inductive mutual reactance along the leakage paths between the three-phase stator windings is quite noticeable. A decrease in the value of this reactance, all other things being equal, leads to a decrease in short-circuit currents.
- 3. With an increase of the mutual resistance between the three-phase stator windings along the paths of the leakage flows, the current of simultaneous (six-phase) closure decreases compared to the current when closing at the terminals of one of the three-phase systems. Considering that short circuits on the high voltage side (equivalent to six-phase short circuits) are undoubtedly more frequent than short circuits on the generator voltage current line, this factor should be attributed to favorable.

2024 ElCon 7

Thank you for your attention!

Alexey Slobodyanyuk SPbPU

Phone: +7 (965)-014-94-93

E-mail: Alexey2002Alexeevich@yandex.ru